The role of predictive biomarker testing in NSCLC: More important than ever!

Ajit Paintal MD

Northshore University Health System

Evanston IL

Disclosures

 Section author for 'Pathology of Head and Neck Tumors' @ uptodate.com

Background

Genetic alterations

• PD-L1 IHC

Specimen considerations

Lung Cancer is Common

Cancer Statistics 2023

Estimated New Cancer Cases in the US in 2023

Prostate	288,300	29%
Lung & bronchus	117,550	12%
Colon & rectum	81,860	8%
Urinary bladder	62,420	6%
Melanoma of the skin	58,120	6%
Kidney & renal pelvis	52,360	5%
Non-Hodgkin lymphoma	44,880	4%
Oral cavity & pharynx	39,290	4%
Leukemia	35,670	4%
Pancreas	33,130	3%
All sites	1,010,310	

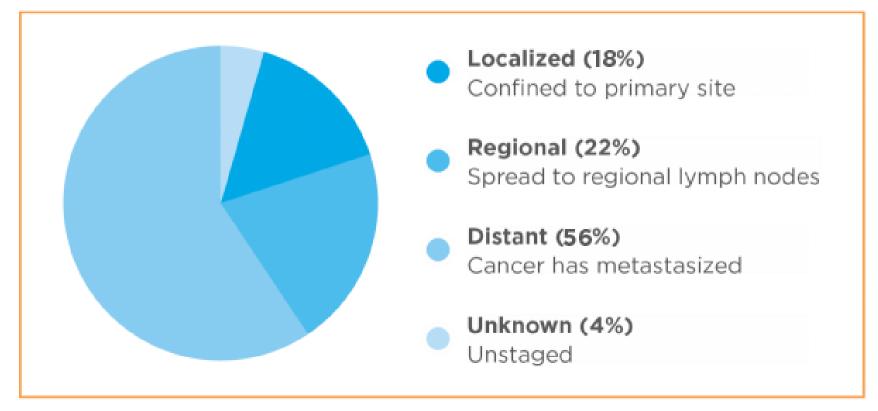
Male

Female

Breast	297,790	31%
Lung & bronchus	120,790	13%
Colon & rectum	71,160	8%
Uterine corpus	66,200	7%
Melanoma of the skin	39,490	4%
Non-Hodgkin lymphoma	35,670	4%
Thyroid	31,180	3%
Pancreas	30,920	3%
Kidney & renal pelvis	29,440	3%
Leukemia	23,940	3%
All sites	948,000	

Lung Cancer is Common

Cancer Statistics 2023


Estimated Cancer Deaths in the US in 2023

Male		
Lung & bronchus	67,160	21%
Prostate	34,700	11%
Colon & rectum	28,470	9%
Pancreas	26,620	8%
Liver & intrahepatic bile duct	19,000	6%
Leukemia	13,900	4%
Esophagus	12,920	4%
Urinary bladder	12,160	4%
Non-Hodgkin lymphoma	11,780	4%
Brain & other nervous system	11,020	3%
All sites	322,080	

Female			
Lung & bronchus	59,910	21%	
Breast	43,170	15%	
Colon & rectum	24,080	8%	
Pancreas	23,930	8%	
Ovary	13,270	5%	
Uterine corpus	13,030	5%	
Liver & intrahepatic bile duct	10,380	4%	
Leukemia	9,810	3%	
Non-Hodgkin lymphoma	8,400	3%	
Brain & other nervous system	7,970	3%	
All sites	287,740		

Most lung cancer patients will never undergo resection

PERCENTAGE OF LUNG CANCER DIAGNOSES BY STAGE

A shifting paradigm in metastatic NSCLC

Lung Cancer Diagnosis 2004

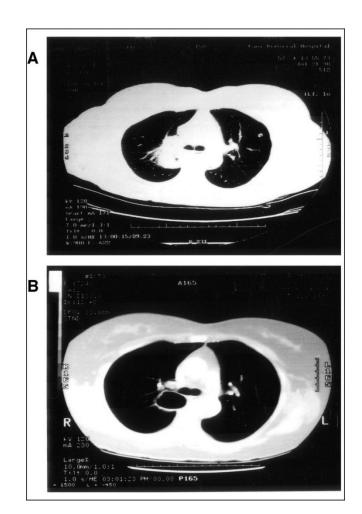
- Small cell carcinoma
- Non-small cell carcinoma

Lung Cancer Diagnosis 2023

- Small cell carcinoma
- Non-small cell carcinoma
 - Adenocarcinoma
 - Squamous cell carcinoma

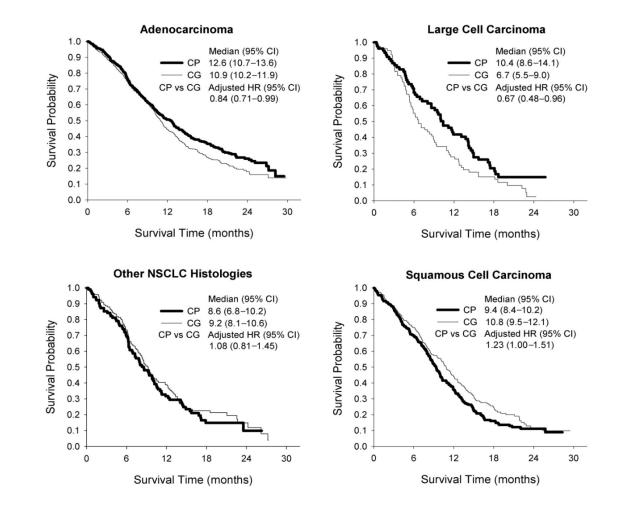
Molecular testing

• PD-L1 expression (IHC)


Predictive biomarkers in NSCLC

Predictive biomarker: Data point that can be used to predict response to a therapuetic intervention

- Histologic type (AdenoCA vs Squamous)
- Genetic alterations
- PD-L1 status


Bevacizumab was associated with severe pulmonary hemorrhage in squamous cell carcinoma

 Severe pulmonary hemorrhage occurred in ~30% of patients with squamous cell carcinoma and 4% of patients with non squamous carcinoma

Johnson D, et al. JCO. 2004

The therapeutic advantage with pemetrexed is limited to patients with non-squamous histologies

National Comprehensive Cancer NCCN Network®

NCCN Guidelines Version 2.2023 Non-Small Cell Lung Cancer

SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE^{a,b,c}

ADENOCARCINOMA, LARGE CELL, NSCLC NOS (PS 0-1)

- No contraindications to PD-1 or PD-L nhibitors^d Preferred
- Pembrolizumab/carboplatin/pemetrexed (category 1)^{1,2,e}
 Pembrolizumab/cisplatin/pemetrexed (category 1)^{2,e}

Other Recommended

- Atezolizumab/carboplatin/paclitaxel/bevacizumab^e (category 1)^{3,f,g,h,i}
 Atezolizumab/carboplatin/albumin-bound paclitaxel^{4,e}
 Nivolumab/ipilimumab^{5,e}

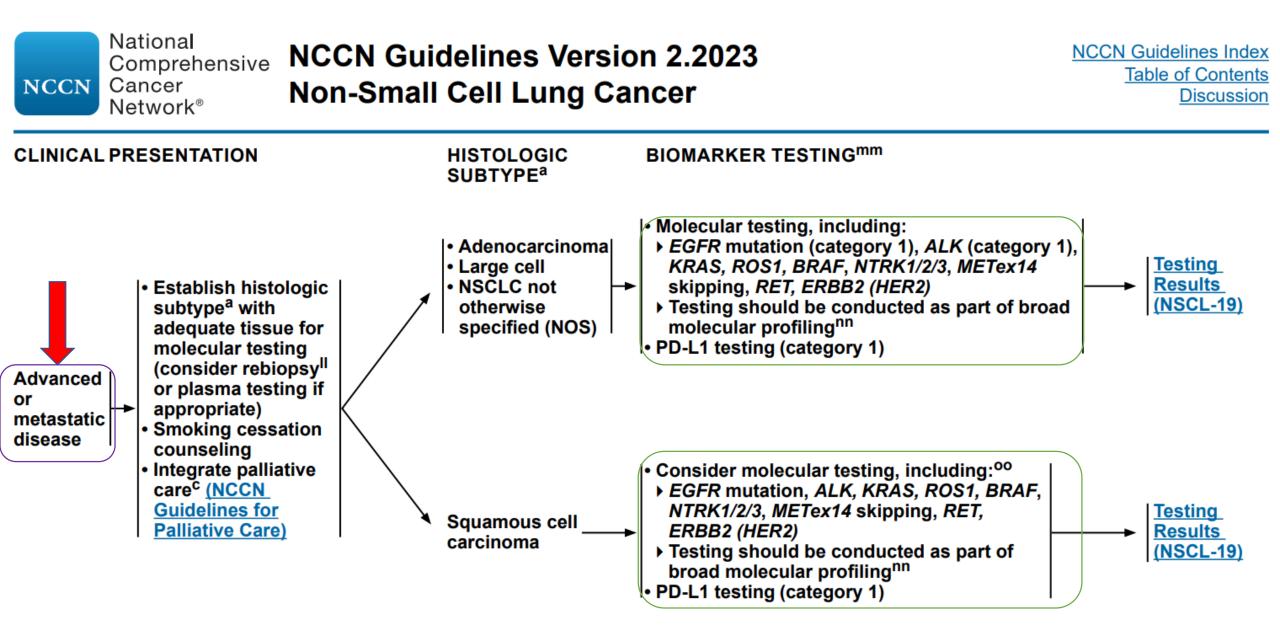
- Nivolumab/ipilimumab/pemetrexed/(carboplatin or cisplatin) (category 1)^{6,e}

- Cemiplimab-rwlc/paclitaxel/(carboplatin or cisplatin) (category 1)^{7,e}
 Cemiplimab-rwlc/pemetrexed/(carboplatin or cisplatin) (category 1)^{7,e}
 Tremelimumab-actl/durvalumab/carboplatin/albumin-bound paclitaxel^{8,e}
- Tremelimumab-actl/durvalumab/(carboplatin or cisplatin)/pemetrexed^{8,e}

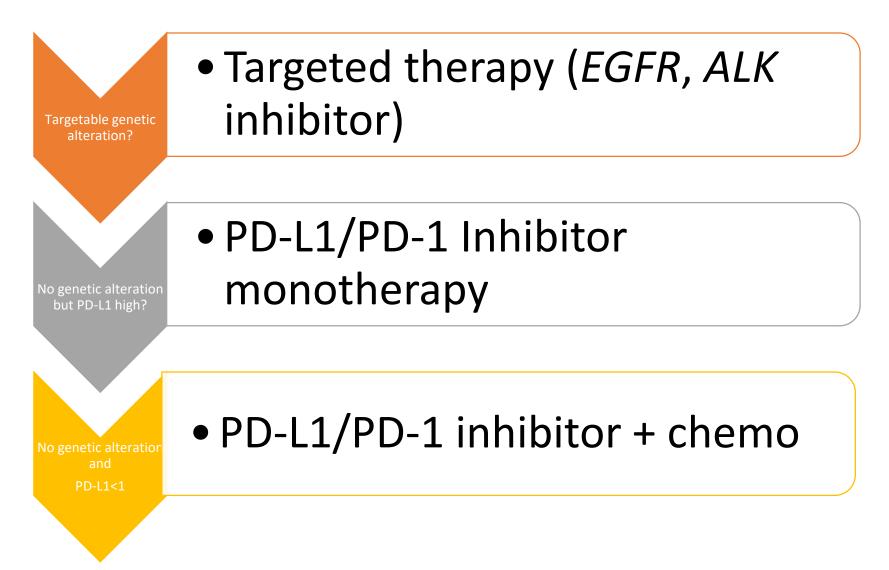
SQUAMOUS CELL CARCINOMA (PS 0–1)

No contraindications to PD-1 or PD-L1 inhibitors^d Preferred

- Pembrolizumab/carboplatin/paclitaxel (category 1)^{36,e}
- Pembrolizumab/carboplatin/albumin-bound paclitaxel (category 1)^{36,e}

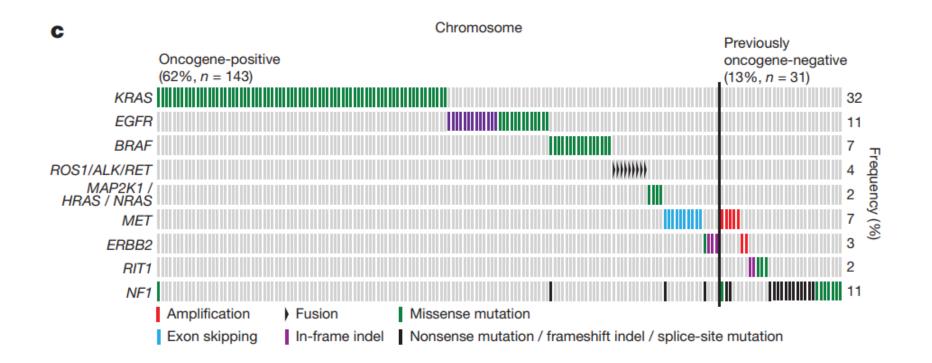

Other Recommended

- Nivolumab/ipilimumab^{5,e}
- Nivolumab/ipilimumab/paclitaxel/carboplatin (category 1)^{6,e}
- Cemiplimab-rwlc/paclitaxel/(carboplatin or cisplatin) (category 1)^{7,e}
- Tremelimumab-actl/durvalumab/carboplatin/albumin-bound paclitaxel^{8,e}
- Tremelimumab-actl/durvalumab/(carboplatin or cisplatin)/ gemcitabine^{8,e}

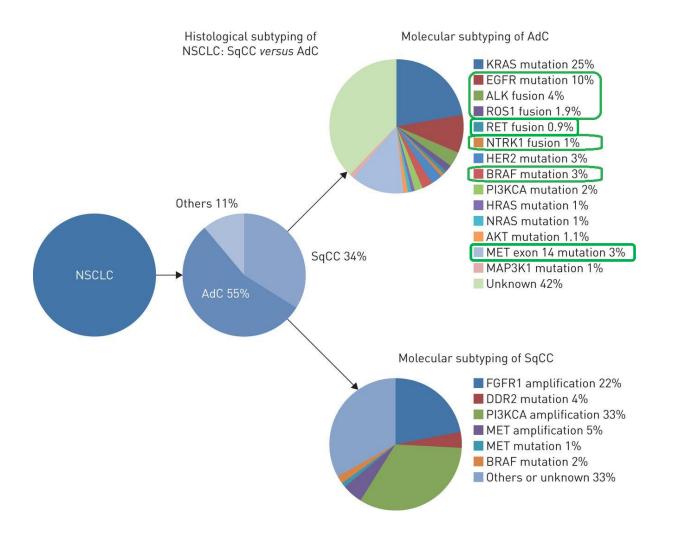

Predictive biomarkers in NSCLC

Predictive biomarker: Data point that can be used to predict response to a therapuetic intervention

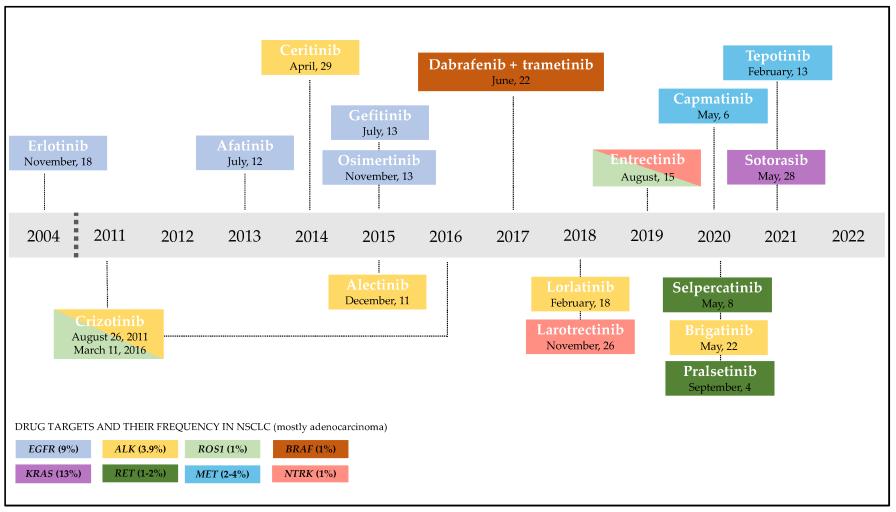
- Histologic type (AdenoCA vs Squamous)
- Genetic alterations
- PD-L1 status



Algorithm for Stage IV NSCLC


Driver mutations in cancer

- Present in all tumor cells as they are early inciting genetic events
- Define a tumor clinicopathologically
- Generally mutually exclusive



Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014.

Driver mutations in NSCLC

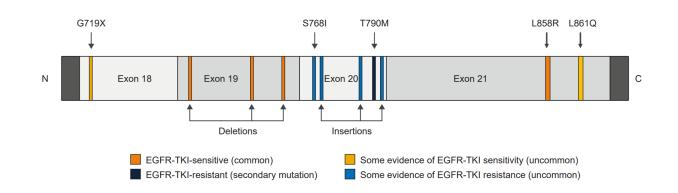
A rapidly evolving array of targeted therapies for NSCLC

Michelotti A, et al. NSCLC as the Paradigm of Precision Medicine at Its Finest: The Rise of New Druggable Molecular Targets for Advanced Disease. Int J Mol Sci. 2022 Jun 17;23(12):6748.

National Comprehensive

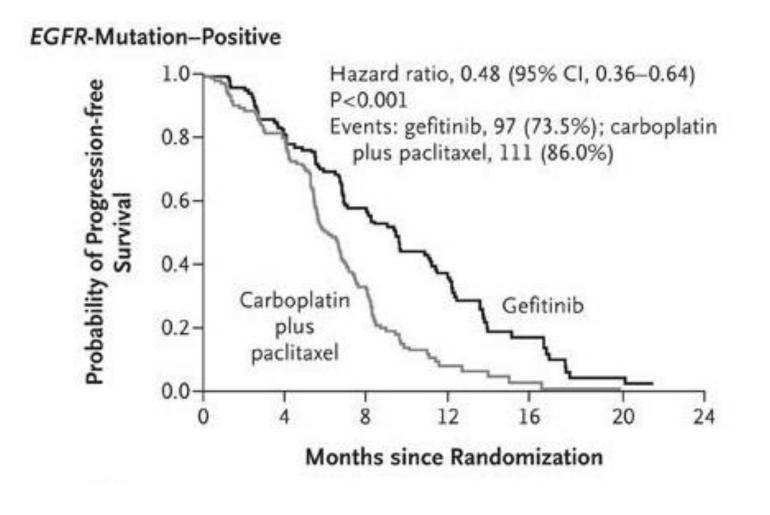
NCCN Cancer Network®

NCCN Guidelines Version 2.2023 Non-Small Cell Lung Cancer

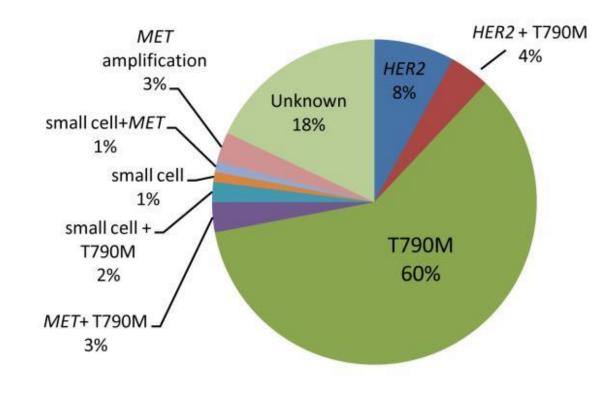

TESTING RESULTS^{II,mm}

EGFR exon 19 deletion or exon 21 L858R mutation positive	NSCL-20
EGFR S768I, L861Q, and/or G719X mutation positive	NSCL-23
EGFR exon 20 insertion mutation positive	NSCL-24
KRAS G12C mutation positive	NSCL-25
ALK rearrangement positive	NSCL-26
ROS1 rearrangement positive	NSCL-29
BRAF V600E mutation positive	NSCL-31
NTRK1/2/3 gene fusion positive	NSCL-32
METex14 skipping mutation positive	NSCL-33
RET rearrangement positive	NSCL-34
ERBB2 (HER2) mutation positive	NSCL-35
PD-L1 ≥1% and negative for actionable molecular biomarkers above	NSCL-36
PD-L1 <1% and negative for actionable molecular biomarkers above	NSCL-37

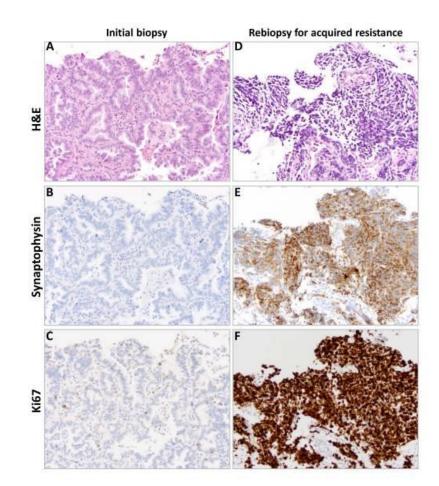
EGFR mutated adenocarcinoma


Present in ~20% of lung adenocarcinoma cases

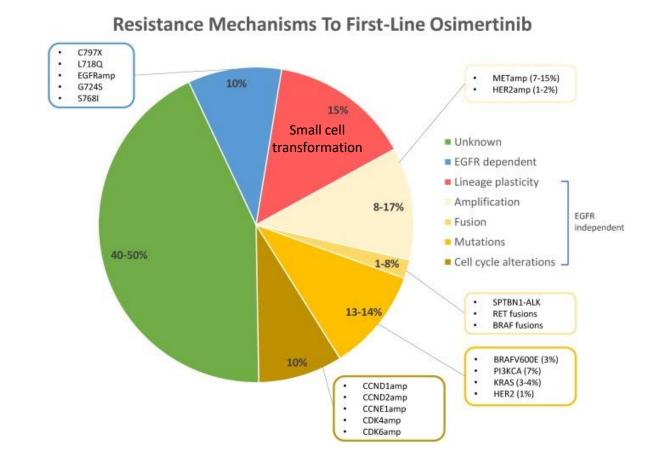
- 3 Relevant sets of primary mutations
 - Exon 19 deletions/L858R on Chr21 (85% of cases)
 - Uncommon mutations (S768I, L861Q, and/ or G719X)


John T, et al. Uncommon EGFR mutations in non-small-cell lung cancer: A systematic literature review of prevalence and clinical outcomes. Cancer Epidemiol. 2022 Feb;76.

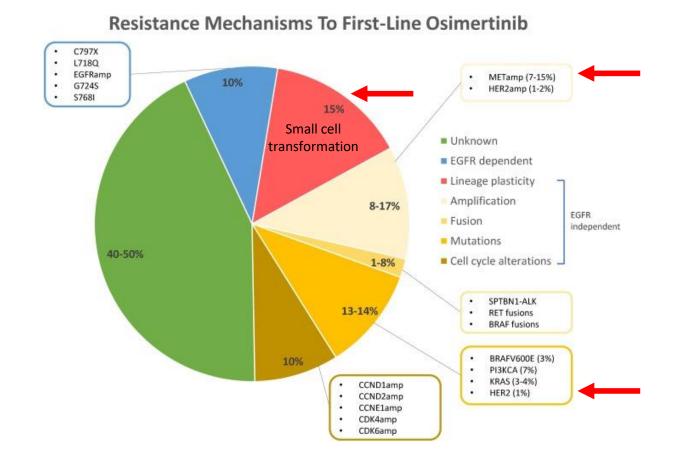
In patients with metastatic NSCLC with an *EGFR* mutation, PFS is superior when treated with a targeted agent


North-East Japan Study Group. Gefitinib or chemotherapy for non-smallcell lung cancer with mutated EGFR. N Engl J Med. 2010

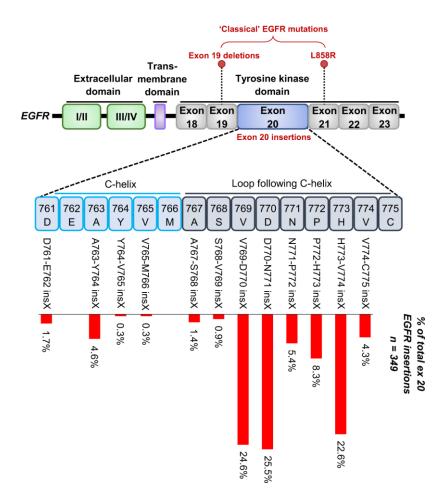
Patients treated with older *EGFR* inhibitors invariably develop resistance


Yu HA, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013.

Small cell transformation in patient treated with EGFR inhibitor


Yu HA, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013.

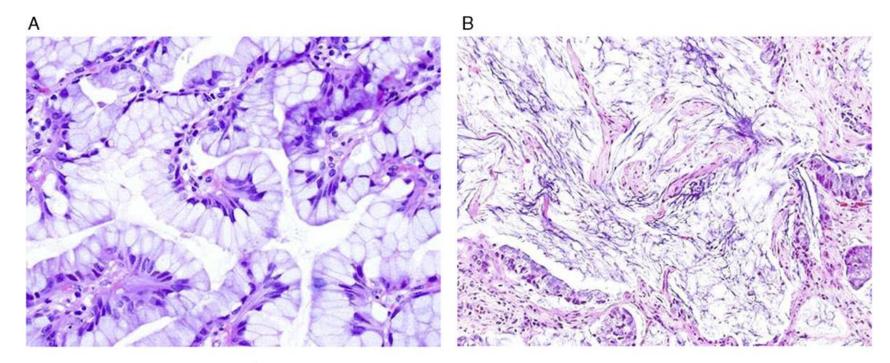
Changing mechanisms of resistance with 3rd Gen *EGFR* inhibitors


Schmid S, Li JJN, Leighl NB. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer. 2020 Sep;147:123-129.

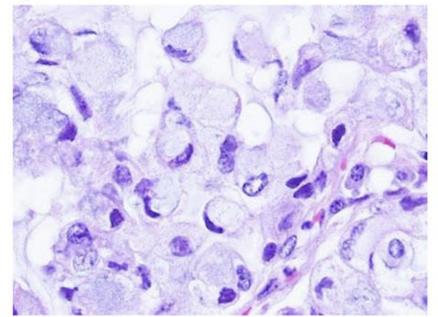
Role of testing for resistance mechanisms in *EGFR* mut NSCLC

Schmid S, Li JJN, Leighl NB. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer. 2020 Sep;147:123-129.

Exon 20 insertions require different therapy (but only approved in 2nd line setting)

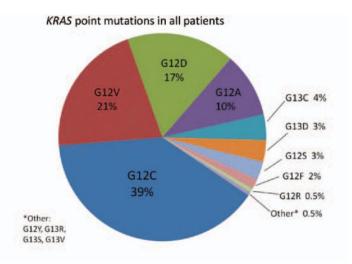

Vyse, S., Huang, P.H. Targeting *EGFR* exon 20 insertion mutations in non-small cell lung cancer. *Sig Transduct Target Ther* **4**, 5 (2019).

KRAS mutated adenocarcinoma

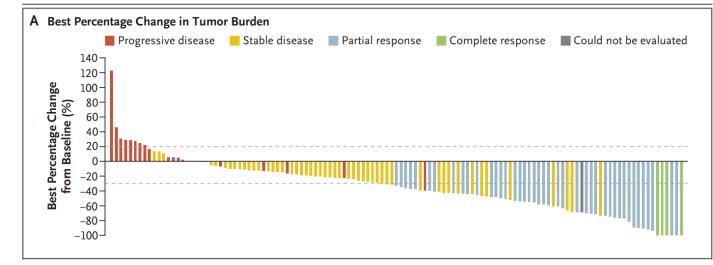

Older Smokers, tend to do poorly

• Tend to be TTF1-

 Small molecule KRAS inhibitor recently approved, but only 2nd line and for G12C mutation

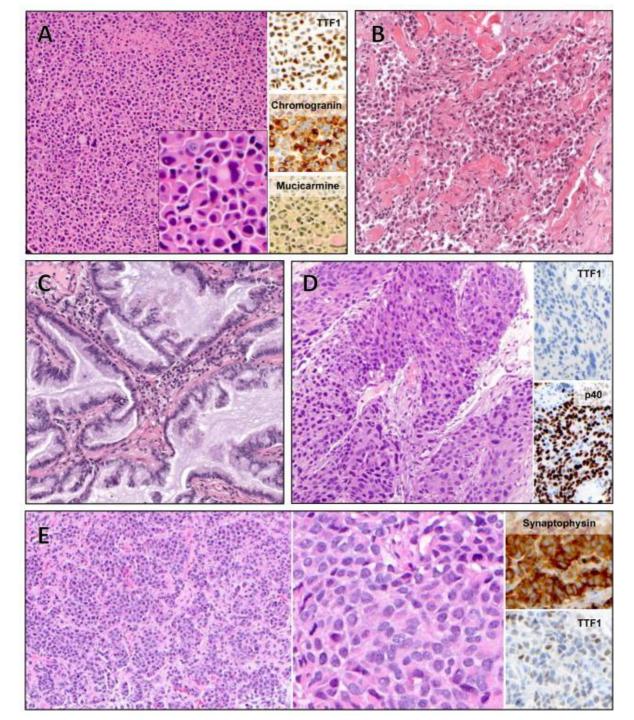


С



Kadota K, et al.. Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation. Am J Surg Pathol. 2014 Aug;38(8):1118–27

About 1/3 of patients with previously treated metastatic G12C adenoCA will respond to sotorasib


Yu HA, et al. Prognostic impact of KRAS mutation subtypes in 677 patients with metastatic lung adenocarcinomas. J Thorac Oncol. 2015 Mar;10(3):431-7.

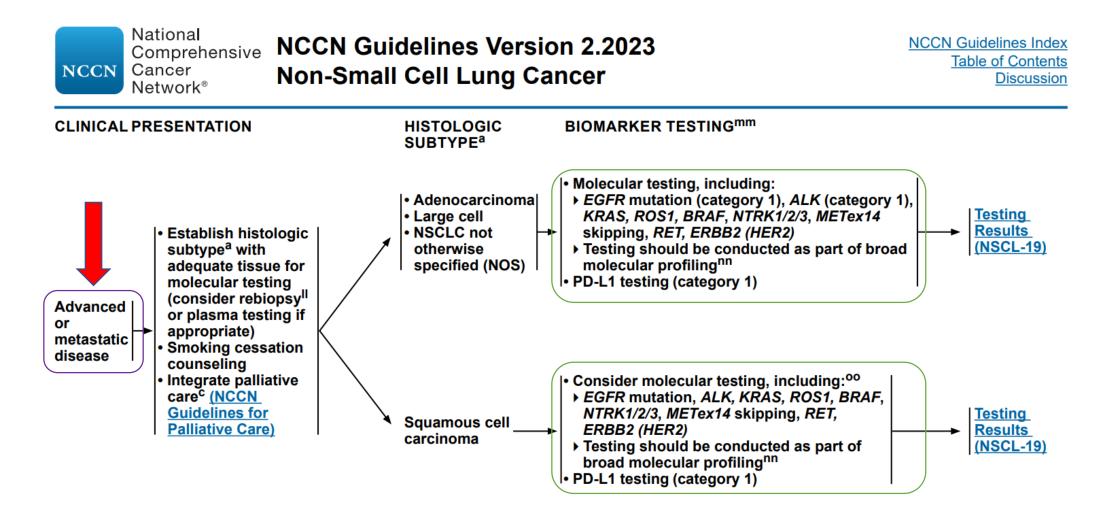
Skoulidis F, et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med. 2021 Jun 24;384(25):2371-2381.

NSCLC with *NTRK* rearrangements

- May be seen in smokers or non smokers
- Very rare, <1% of cases of lung adenocarcinoma
- Rearrangements may involve NTRK1, NTRK2, or NTRK3
- Morphologically heterogeneous (squamous, NE)
- Treated with *NTRK* inhibitor (larotrectinib)

Farago AF, et al. Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol. 2018.

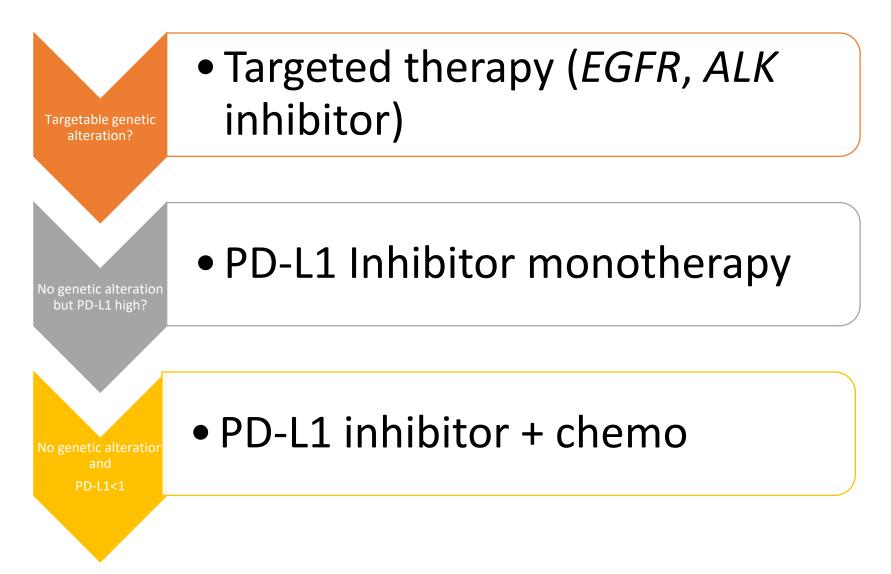
National Comprehensive NCCN Cancer

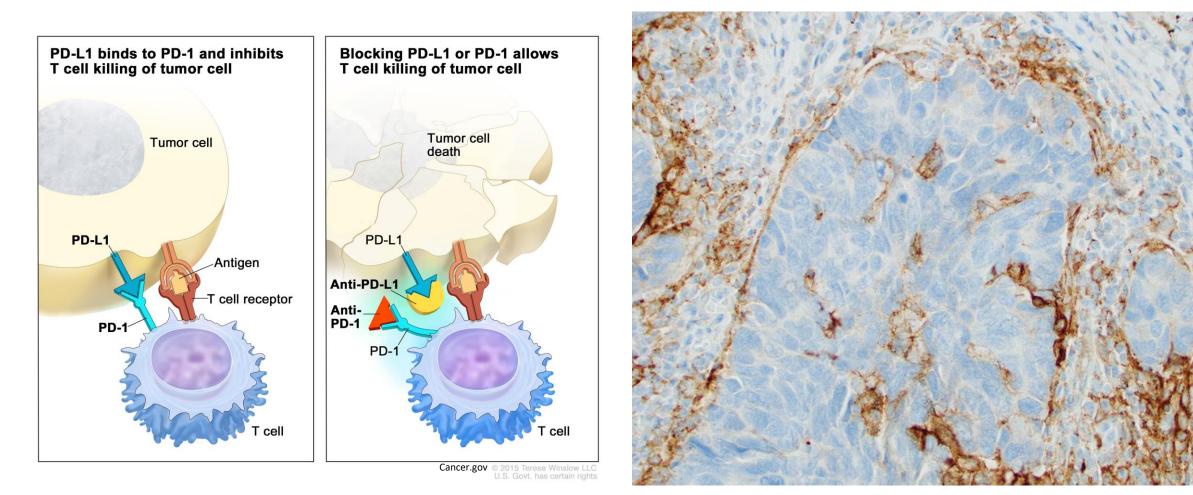

Network[®]

• NCCN Guidelines Version 2.2023 Non-Small Cell Lung Cancer

TESTING RESULTS^{II,mm}

	EGFR exon 19 deletion or exon 21 L858R mutation positive	NSCL-20
	Lor Nexon 13 deletion of exon 21 Logon mutation positive	NOOL-20
	EGFR S768I, L861Q, and/or G719X mutation positive	NSCL-23
2 nd line	EGFR exon 20 insertion mutation positive	NSCL-24
2 nd line	KRAS G12C mutation positive	NSCL-25
	ALK rearrangement positive	NSCL-26
	ROS1 rearrangement positive	NSCL-29
	BRAF V600E mutation positive	NSCL-31
	NTRK1/2/3 gene fusion positive	NSCL-32
	METex14 skipping mutation positive	NSCL-33
	RET rearrangement positive	NSCL-34
2 nd line	ERBB2 (HER2) mutation positive	NSCL-35
	PD-L1 ≥1% and negative for actionable molecular biomarkers above	NSCL-36
	PD-L1 <1% and negative for actionable molecular biomarkers above	NSCL-37

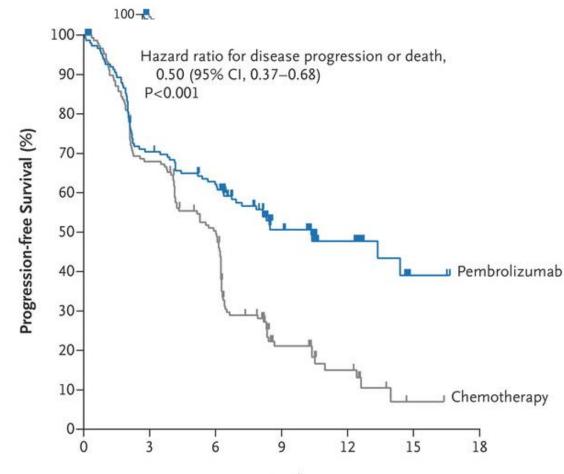

Is molecular testing indicated in squamous cell carcinoma?


Is molecular testing indicated in squamous cell carcinoma?

- Not mandatory but may be of value, particularly in small biopsies
 - A few targetable genetic alterations (*NTRK1/2/3*, *METex14*) are present at low frequencies in squamous cell CA
 - May miss an unsampled glandular component in an adenosquamous CA (young, non smokers in particular)

Algorithm for Stage IV NSCLC

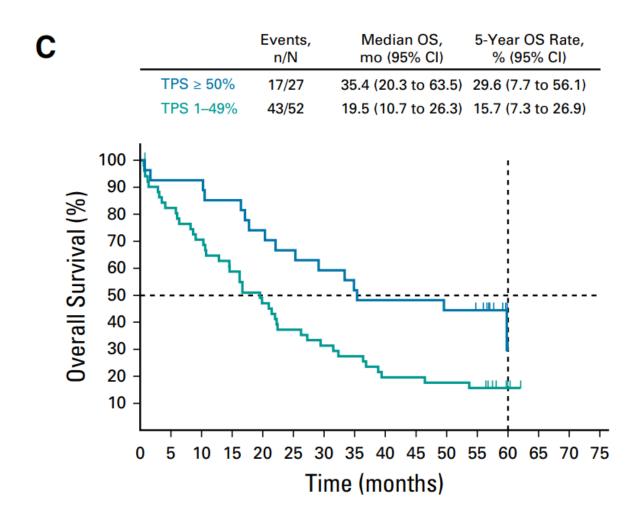
PD-L1 inhibitors: A revolution in oncology


Role of PD-L1 inhibitors in patients with <u>Stage</u> <u>IV disease</u> <u>w/o a targetable genetic alteration</u>

 2016 - Pembrolizumab originally indicated as monotherapy for TPS>50 (KEYNOTE 024)

 2018 - Pembrolizumab + chemo combo therapy indicated irrespective of PD-L1 score in NSCLC
 (KEYNOTE 189, KEYNOTE 407)

 2019 – Pembrolizumab monotherapy indication expanded to TPS>1 (KEYNOTE 042)


PD-L1 inhibitors as first line therapy in metastatic NSCLC

Month

Reck M, et al.. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016 Nov 10;375(19):1823-1833.

Almost 30% of patients with mNSCLC and PD-L1 > 50% are alive after 5 years

Garon EB, et al. Five-Year Overall Survival for Patients With Advanced Non–Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J Clin Oncol. 2019 Role of PD-L1 inhibitors in patients with <u>Stage</u> <u>IV disease</u> <u>w/o a targetable genetic alteration</u>

- PD-L1 TPS>50 Pembrolizumab, Atezolizumab, Cemiplimab monotherapy
- PD-L1 TPS1-49 PD-L1 inhibitor + chemo, or Pembrolizumab monotherapy if a poor candidate for chemo

• PD-L1 TPS<1 – PD-L1 inhibitor + chemo

Differences between PD-L1 and genetic alteration testing

PD-L1

- IHC based
- Continuous variable
- May change over time and vary at different sites
- Heterogeneously expressed

Genetic alterations

- Mostly PCR/NGS based
- Binary variable
- Usually does not change over time
- Uniformly present throughout tumor

Role of pathology: Selecting patients for monotherapy with PD-L1 inhibitor

• What test (antibody clone) to use?

• What specimen to use?

• How to score?

CrossMark

Multicenter Comparison of 22C3 PharmDx (Agilent) and SP263 (Ventana) Assays to Test PD-L1 Expression for NSCLC Patients to Be Treated with Immune Checkpoint Inhibitors

Antonio Marchetti, MD, PhD,^{a,*} Massimo Barberis, MD,^b Renato Franco, MD,^c Graziano De Luca, MD,^a Maria Vittoria Pace, PhD,^a Stefania Staibano, MD,^d Marco Volante, MD,^e Fiamma Buttitta, MD, PhD,^a Elena Guerini-Rocco, MD,^b Luisella Righi, MD,^e Tommaso D'antuono, BTech,^a Giorgio V. Scagliotti, MD,^e Carmine Pinto, MD,^f Gaetano De Rosa, MD,^d Mauro Papotti, MD^e

^aCenter of Predictive Molecular Medicine, Center for Excellence on Aging and Translational Medicine, University of Chieti-Pescara, Chieti, Italy ^bDivision of Pathology, European Institute of Oncology, Milan, Italy ^cPathology Unit, University of Campania Luigi Vanvitelli, Naples, Italy ^dPathology Section, Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy ^eDepartment of Oncology, University of Turin, Torino, Italy ^fMedical Oncology, Arcispedale S. Maria Nuova Hospital-IRCCS, Reggio Emilia, Italy

Received 15 March 2017; revised 22 April 2017; accepted 12 July 2017 Available online - 14 August 2017

ABSTRACT

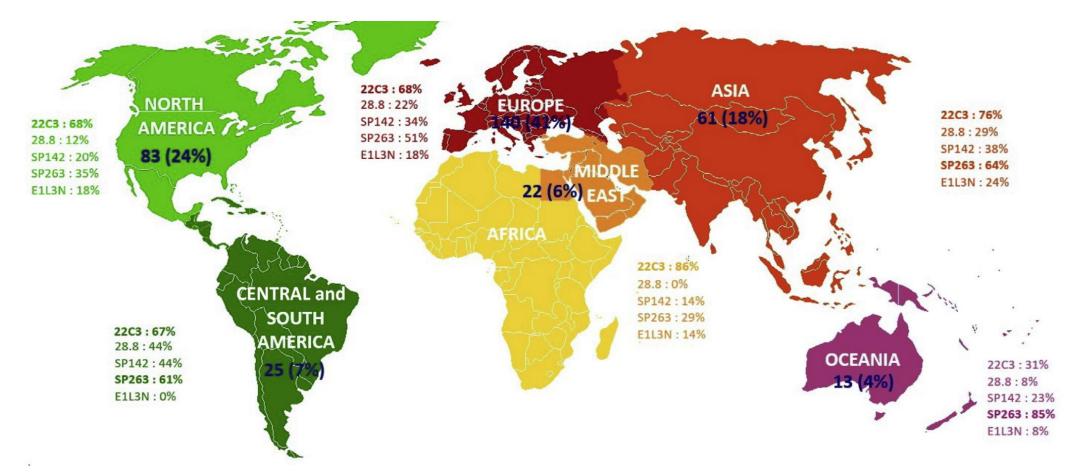
Introduction: Among the several agents targeting the programmed cell death 1 (PD-1) pathway, pembrolizumab is currently the only one approved for the treatment of patients with NSCLC in association with a companion diagnostic assay, the anti–PD-L1 immunohistochemical (IHC) 22C3 PharmDx (Agilent Technologies, Santa Clara, CA) using the Dako Autostainer (Dako, Carpinteria, CA). However, the Dako platform is not present in each pathology department, and this technical limitation is a major problem for the diffusion of the PD L1 IHC predictive text for pembrolizumab data obtained with the 22C3 and SP263 clones at the cutoff of 1% or higher was mainly related to the lower (about 80%) interrater agreement at this cutoff with each clone.

Conclusions: These results indicate a high correlation between PD-L1 IHC expression data obtained with the Agilent PD-L1 IHC 22C3 pharmDx and the Ventana PD-L1 (SP263) tests in NSCLC and suggest that the two assays could be utilized interchangeably as an aid to select patients for first-line and second-line treatment with pembrolizumab and potentially with other anti-PD-1/PD-L1 checkpoint inhibitors.

> Marchetti A, et al. Multicenter Comparison of 22C3 PharmDx (Agilent) and SP263 (Ventana) Assays to Test PD-L1 Expression for NSCLC Patients to Be Treated with Immune Checkpoint Inhibitors. J Thorac Oncol. 2017

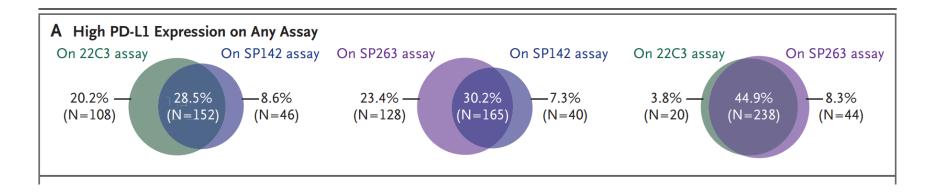
PD-L1 Assays 22C3 and SP263 are Not Interchangeable in Non–Small Cell Lung Cancer When Considering Clinically Relevant Cutoffs

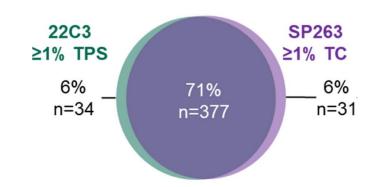
An Interclone Evaluation by Differently Trained Pathologists


Enrico Munari, MD, PhD,* Giulio Rossi, MD,† Giuseppe Zamboni, MD,*‡ Gianluigi Lunardi, MD,§ Marcella Marconi, BS,* Marco Sommaggio, BS,* George J. Netto, MD, Mohammad O. Hoque, PhD,¶ Matteo Brunelli, MD, PhD,‡ Guido Martignoni, MD,‡# Michael C. Haffner, MD, PhD,** Francesca Moretta, MD,†† Maria C. Pegoraro, MD,‡‡ Alberto Cavazza, MD,§§ Giuseppina Samogin, BS,|||| Vanna Furlan, BS,|||| Francesca R. Mariotti, PhD,¶¶ Paola Vacca, PhD,¶¶ Lorenzo Moretta, MD,¶¶ and Giuseppe Bogina, MD*

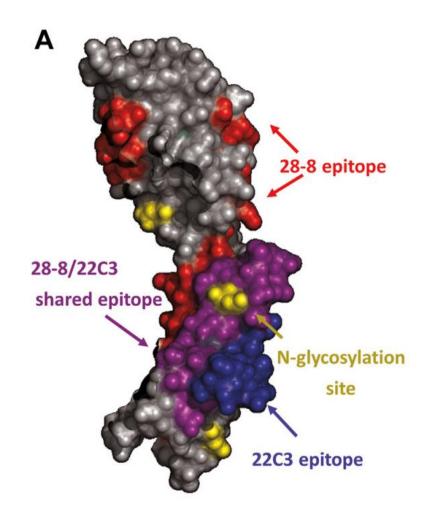
> Munari E et al. PD-L1 Assays 22C3 and SP263 are Not Interchangeable in Non-Small Cell Lung Cancer When Considering Clinically Relevant Cutoffs: An Interclone Evaluation by Differently Trained Pathologists. Am J Surg Pathol. 2018

Each FDA approved drug is linked to a specific antibody clone (companion diagnostic)


Drug	Clinical Setting	Clinical Trial	CDx	Cutpoint	Year
Pembrolizumab	Stage IV	KEYNOTE 042 (KEYNOTE 024)	22c3 (Dako) (22c3)	TPS>1 (TPS>50)	2019 (2016)
Atezolizumab	Stage IV	IMpower 110	SP142 (Ventana)	TPS>50 or ICA>10	2020
Atezolizumab	Stage IB-IIIA, adjuvant	IMpower 010	SP263 (Ventana)	TPS>1	2021
Nivolumab+ Ipilimumab	Stage IV	CHECKMATE 227	28-8 (Dako)	TPS>1	2020
Cemiplimab	Stage IV	Study 1624	(22c3) (Dako)	TPS>50	2021


Antibody utilization by region

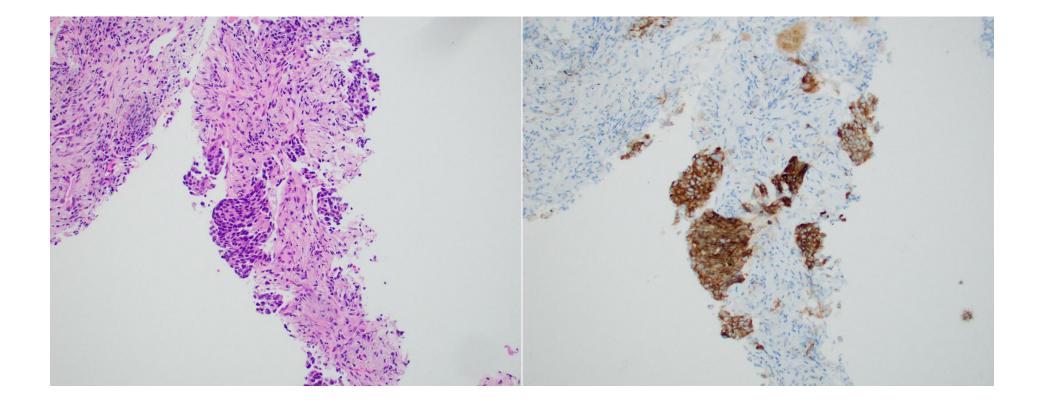
Mino-Kenudson M, et al. The International Association for the Study of Lung Cancer Global Survey on Programmed Death-Ligand 1 Testing for NSCLC. J Thorac Oncol. 2021


SP263 and 22c3 tend to agree, SP142 underscores (IMpower 110)

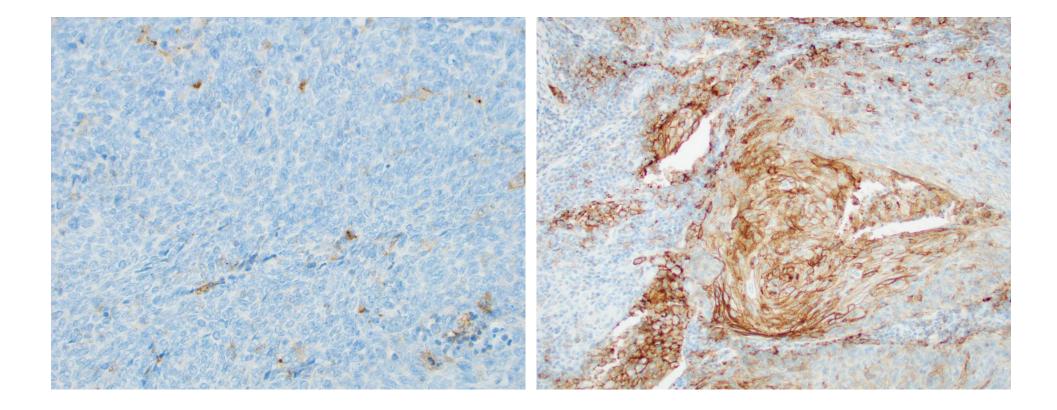
Herbst RS, et al. Atezolizumab for First-Line Treatment of PD-L1-Selected Patients with NSCLC. N Engl J Med. 2020 Oct 1;383(14):1328-1339.

Staining directed against PD-L1 extracellular domain antigens is labile

Lawson NL, et al. Impact of Decalcification, Cold Ischemia, and Deglycosylation on Performance of Programmed Cell Death Ligand-1 Antibodies With Different Binding Epitopes: Comparison of 7 Clones. Mod Pathol. 2023 May 23;36(9)

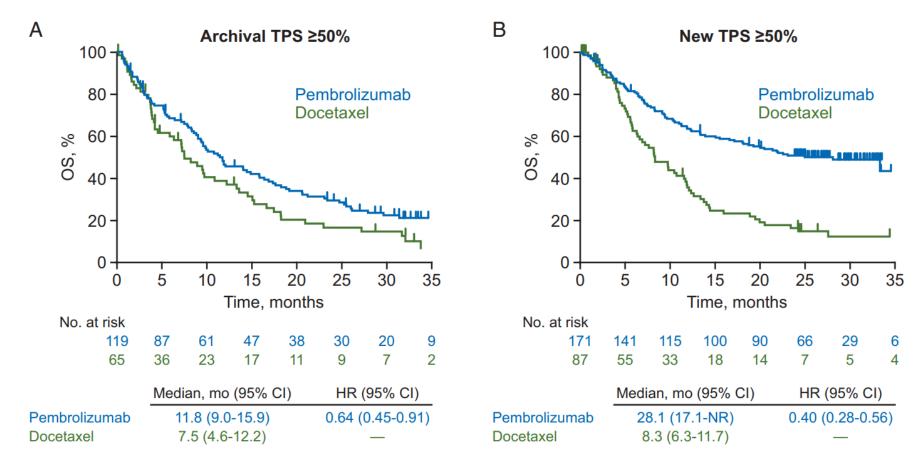

Role of pathology: Selecting patients for monotherapy with PD-L1 inhibitor

• What test (antibody clone) to use?

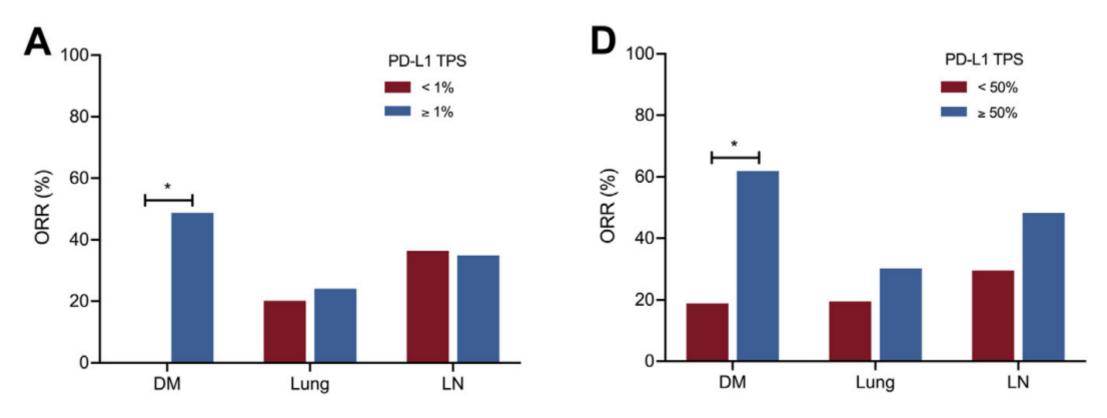

- 22c3 and SP263 have the best concordance and have FDA approved NSCLC indications
- SP142 tends to underscore
- SP142 and SP263 are most robust
- What specimen to use?

• How to score?

PD-L1 staining of tumor cells


Temporal and geographic heterogeneity

Testing of small biopsies vs cell blocks vs resections


- Clinical trials for patient's with metastatic disease did not utilize resection material
- Although results often differ based on site of disease, no good data in regards to which site will predict response to therapy
- Assays are validated for use in formalin fixed paraffin embedded material

Trend towards better predictive value in new versus archival specimens

Herbst RS, et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: an updated analysis of KEYNOTE-010 trial. Ann Oncol. 2019 Feb 1;30(2):281-289.

PD-L1 IHC may have better predictive value at non nodal sites of metastatic disease

Hong L, et al. Programmed Death-Ligand 1 Heterogeneity and Its Impact on Benefit From Immune Checkpoint Inhibitors in NSCLC. J Thorac Oncol. 2020 Sep;15(9):1449-1459.

Role of pathology: Selecting patients for monotherapy with PD-L1 inhibitor

• What test (antibody clone) to use?

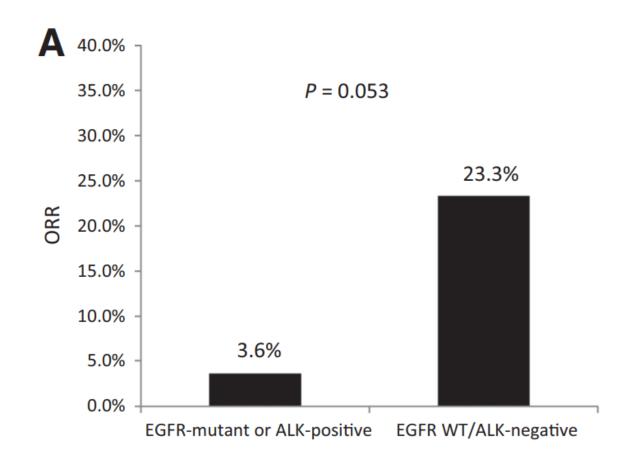
- 22c3 and SP263 have the best concordance and have FDA approved NSCLC indications
- SP142 tends to underscore
- What specimen to use?
 - New biopsies may have more predictive value than archival tissue
 - Distant sites of metastatic dz may have more predictive value than primary tumor or regional LN
 - Be very wary of testing anything other than FFPE

ctDNA can be helpful, but is inferior to direct testing of tumor

ARTICLE

Check for updates

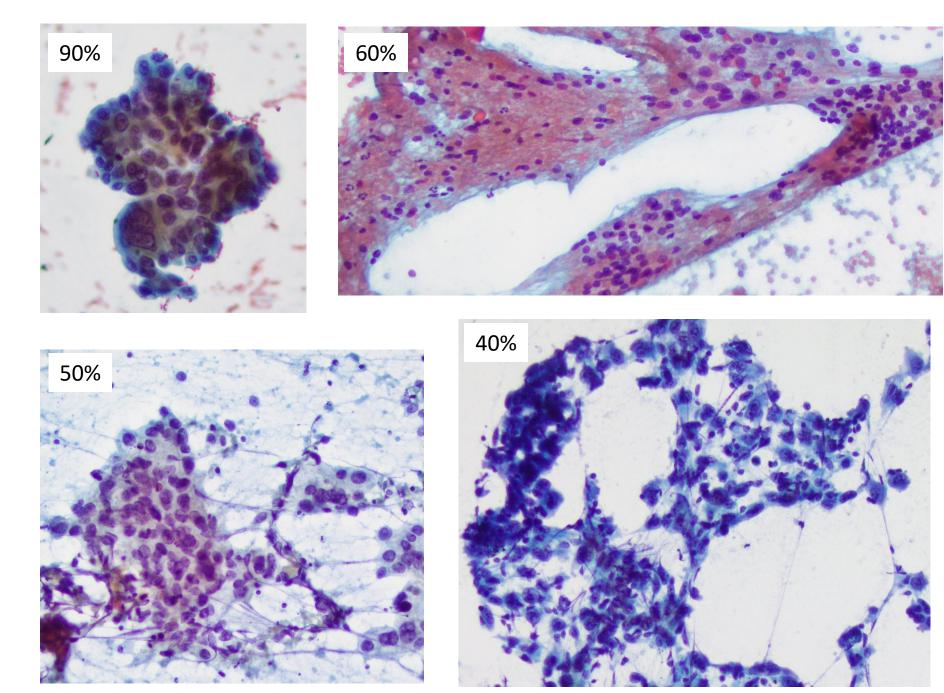
Comparison of solid tissue sequencing and liquid biopsy accuracy in identification of clinically relevant gene mutations and rearrangements in lung adenocarcinomas


Lawrence Hsu Lin^{1,4}, Douglas H. R. Allison ^{1,4}, Yang Feng², George Jour¹, Kyung Park¹, Fang Zhou¹, Andre L. Moreira ¹, Guomiao Shen¹, Xiaojun Feng¹, Joshua Sabari³, Vamsidhar Velcheti³, Matija Snuderl¹ and Paolo Cotzia¹

© The Author(s), under exclusive licence to United States & Canadian Academy of Pathology 2021

Screening for therapeutic targets is standard of care in the management of advanced non-small cell lung cancer. However, most molecular assays utilize tumor tissue, which may not always be available. "Liquid biopsies" are plasma-based next generation sequencing (NGS) assays that use circulating tumor DNA to identify relevant targets. To compare the sensitivity, specificity, and accuracy of a plasma-based NGS assay to solid-tumor-based NGS we retrospectively analyzed sequencing results of 100 sequential patients with lung adenocarcinoma at our institution who had received concurrent testing with both a solid-tissue-based NGS assay and a commercially available plasma-based NGS assay. Patients represented both new diagnoses (79%) and disease progression on treatment (21%); the majority (83%) had stage IV-disease. Tissue NGS identified 74-clinically relevant mutations, including 52 therapeutic targets, a sensitivity of 94.8%, while plasma-NGS identified 41 clinically relevant mutations, a sensitivity of 52.6% (p < 0.001). Tissue-NGS showed significantly higher sensitivity and accuracy across multiple patient subgroups, both in newly diagnosed and treated patients, as well as in metastatic and nonmetastatic disease. Discrepant cases involved hotspot mutations and actionable fusions including those in *EGFR*, *ALK*, and *NTRK1*. In summary, tissue-NGS detects significantly more clinically relevant alterations and therapeutic targets compared to plasma-NGS, suggesting that tissue-NGS should be the preferred method for molecular testing of lung adenocarcinoma when tissue is available. Plasma-NGS can still play an important role when tissue testing is not possible. However, given its low sensitivity, a negative result should be confirmed with a tissue-based assay.

Modern Pathology (2021) 34:2168-2174; https://doi.org/10.1038/s41379-021-00880-0


PD-L1 monotherapy has <u>minimal</u> benefit in patients whose tumors harbor *ALK* and *EGFR* alterations

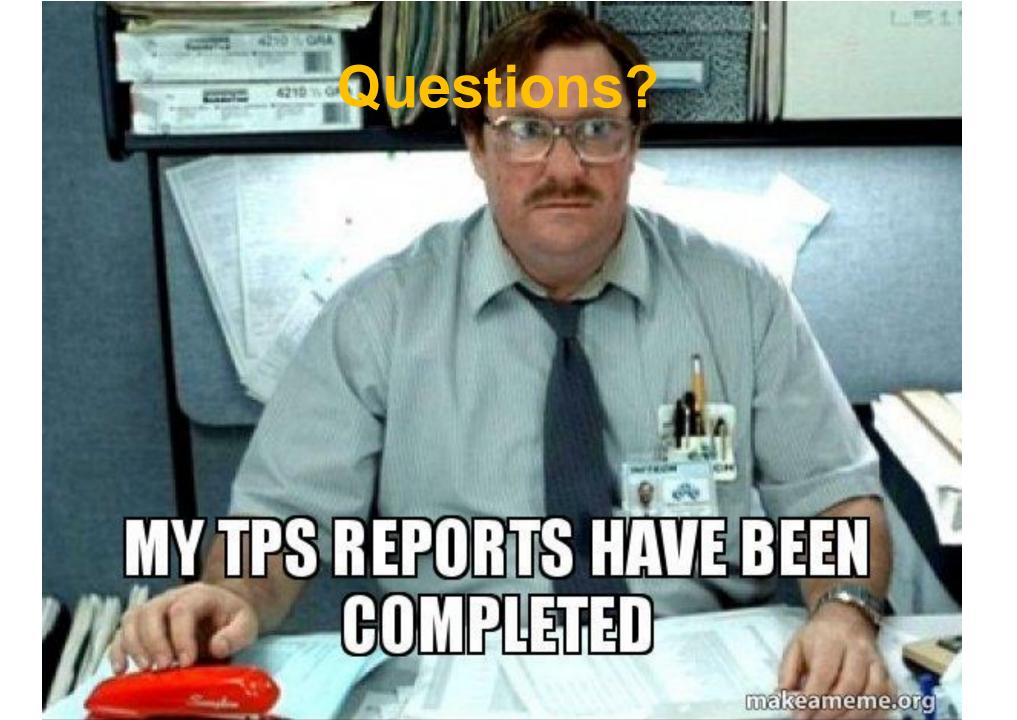
Gainor JF, et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer Res. 2016 Sep 15;22(18):4585-93.

Specimen requirements for molecular studies

- Single gene vs multigene assay
- Tissue quantity dependant on platform
 Ion Torrent vs Illumina
- Typically 20% tumor cellularity
- Can be performed on aspirate smears if validated

Courtesy of Dr Mir Alikhan

Is ancillary testing of small biopsies worthwhile outside of the Stage IV setting?

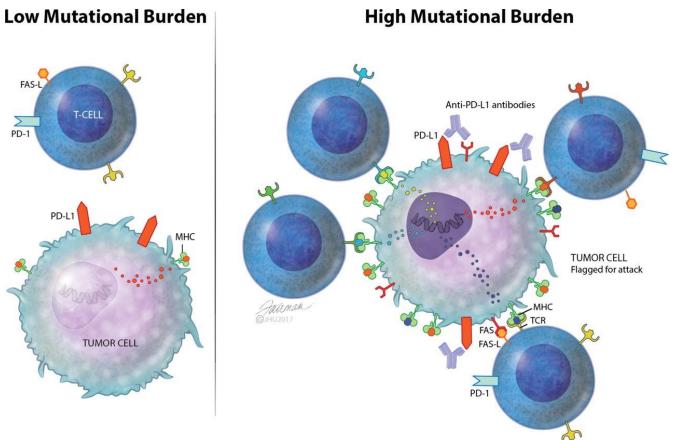

YES!!!

- Stage IIIB: Predict response to maintenance durvalumab (low response rate in ALK/EGFR mutant patients and TPS<1)
- Stage IB-IIIA: Predict response to neoadjuvant atezolizumab + chemo (low response rate in ALK/EGFR mutant patients and patients TPS<1)

Closing points

 Predictive biomarker testing in NSCLC increasingly makes the role of (cyto)pathology more relevant than ever

 Triage of tissue for both PD-L1 IHC as well as molecular testing is extremely important in driving first line therapy



Value of PD-L1 IHC in the neoadjuvant setting

	No. of	Median Event-free Survival (95% CI)		Unstratified Hazard Ratio for Disease Progression,			
Subgroup	Patients			Disease Recurrence, or Death (95% CI)			
-		Nivolumab plus chemotherapy (N=179)	alone (N=179)				
Overall	358		20.8 (14.0-26.7)				0.63 (0.45-0.87
Age	330	51.0 (50.2-INR)	20.8 (14.0-20.7)				0.03 (0.43-0.87
<65 yr	176	NR (31.6-NR)	20.8 (14.0-NR)				0.57 (0.35-0.93
<65 yr ≥65 yr	176	30.2 (23.4–NR)	18.4 (10.6–31.8)				0.37 (0.35-0.93
≥oo yr Sex	182	30.2 (23.4-NR)	18.4 (10.0-51.8)				0.70 (0.45-1.08
Male	255	30.6 (20.0-NR)	16.9 (13.8-24.9)		•		0.68 (0.47-0.98
Female	103	· · · · · ·	31.8 (13.9–NR)	-			0.46 (0.22-0.96
Geographic region	105	INK (50.5-INK)	51.8 (15.9-INK)				0.46 (0.22-0.96
North America	91	NR (25.1-NR)	NR (12.8-NR)				0.78 (0.38-1.62
	66	31.6 (13.4–NR)	21.1 (10.2–NR)				0.80 (0.36-1.7
Europe Asia	177	· · · · · ·	· · · · · ·	-			
ECOG performance-status scor		NR (30.2–NR)	16.5 (10.8–22.7)		- :		0.45 (0.29-0.7
	241	ND (20.2 ND)	22 7 (1C C ND)				0 (1 (0 41 0 0
0	241	NR (30.2–NR)	22.7 (16.6–NR) 14.0 (9.8–26.2)				0.61 (0.41-0.9
-	117	30.5 (14.6–NR)	14.0 (9.8–26.2)				0.71 (0.41–1.2
Disease stage at baseline	127	NID (27.9 NID)	NR (16.8-NR)				0.87 (0.48-1.5
IIIA	228	NR (27.8–NR) 31.6 (26.6–NR)	15.7 (10.8–22.7)	-			0.54 (0.37-0.8)
	228	51.0 (20.0-INK)	15.7 (10.8-22.7)		_		0.54 (0.57-0.80
Histologic type of tumor	100	20 C (20 0 NID)	22.7 (11.5 ND)				0.77 (0.40, 1.2)
Squamous	182 176	30.6 (20.0-NR)	22.7 (11.5–NR)				0.77 (0.49-1.22
Nonsquamous	1/6	NR (27.8–NR)	19.6 (13.8–26.2)		_		0.50 (0.32-0.7
Smoking status Current or former smoker	318	21 C (20 2 NID)	22.4 (15.7. ND)				0 68 10 48 0 0
Never smoked	318	31.6 (30.2-NR)	22.4 (15.7–NR) 10.4 (7.7–20.8)		•		0.68 (0.48-0.90
	39	NR (5.6–NR)	10.4 (7.7-20.8)	•			0.33 (0.13-0.8)
PD-L1 expression level	155	25.1 (14.C NID)	19 4 (12 0 26 2)				0.05 (0.54 . 1.2)
<1% ≥1%	155		18.4 (13.9–26.2)	-			0.85 (0.54-1.32
≥1% 1– 49 %	98	NR (NR-NR)	21.1 (11.5-NR)		_		0.41 (0.24-0.7
1−49% ≥50%	98 80	NR (27.8–NR)	26.7 (11.5-NR)				0.58 (0.30-1.12
≥50% TMB	80	NR (NR–NR)	19.6 (8.2–NR)	•			0.24 (0.10-0.6
<12.3 mutations/megabase	102	20.5 (10.4 MD)	26.7 (16.6-NR)				0.86 (0.47-1.5)
<12.3 mutations/megabase ≥12.3 mutations/megabase	76	30.5 (19.4–NR) NR (14.8–NR)	20.7 (10.6–NR) 22.4 (13.4–NR)				0.69 (0.33-1.4)
Type of platinum therapy	/0	NR (14.0-NR)	22.4 (13.4-INK)				0.09 (0.33-1.40
Cisplatin	258	NR (25.1–NR)	20.9 (15.7–NR)				0.71 (0.49-1.0)
Carboplatin	72	· · · · · · · · · · · · · · · · · · ·					
Carboplatin	12	NR (30.5–NR)	10.6 (7.6–26.7)		-		0.31 (0.14-0.6
			0.125	0.25 0.50	1.00 2.0	4.00	

Forde PM, et al. CheckMate 816 Investigators. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N Engl J Med. 2022 May 26;386(21):1973-1985.

Tumor mutational burden as a biomarker?

Sharabi A, et al. Exceptional Response to Nivolumab and Stereotactic Body Radiation Therapy (SBRT) in Neuroendocrine Cervical Carcinoma with High Tumor Mutational Burden: Management Considerations from the Center For Personalized Cancer Therapy at UC San Diego Moores Cancer Center. Oncologist. 2017

KEYNOTE 227: Early data showed PFS benefit in TMB high, but no OS difference in final data

Subgroup	No. of Patients	Nivolumab + ipilimumab (N=583)	erall Survival Chemotherapy (N=583) nths	Unstra		ard Ratio for Death % CI)
Randomized Groups						
PD-L1						
All randomized	1166	17.1	13.9		.	0.73 (0.64-0.84)
<1%	373	17.2	12.2		1	0.62 (0.49–0.79)
≥1%	793	17.1	14.9		İ	0.79 (0.65–0.96)
Additional Exploratory Subgroup Analyses						
PD-L1						
1–49%	396	15.1	15.1			0.94 (0.75-1.18)
≥50%	397	21.2	14.0		-	0.70 (0.55-0.90)
Tumor mutational burden					1	
Low, <10 mut/Mb	380	16.2	12.6		— [0.75 (0.59-0.94)
High, ≥10 mut/Mb	299	23.0	16.4		- :	0.68 (0.51-0.91)
PD-L1 and tumor mutational burde (mut/Mb) combined	en					
PD-L1 <1%					1	
Tumor mutational burden <10) 111	15.5	13.0			0.69 (0.46–1.05)
Tumor mutational burden ≥10	86	20.4	11.2 —	•	- !	0.51 (0.30-0.87)
PD-L1 ≥1%					i i	
Tumor mutational burden <10	269	16.2	12.1	•		0.78 (0.59–1.02)
Tumor mutational burden ≥10	213	24.4	18.1	•	<u> </u>	0.77 (0.54–1.09)
PD-L1 ≥50%						
Tumor mutational burden <10	125	18.1	8.1			0.67 (0.44-1.03)
Tumor mutational burden ≥10) 111	NR	17.2	•	1	0.63 (0.37–1.07)
			0.25	0.50	1.00	2.00
			Nivolum	nab + Ipilimuma Better		otherapy etter

Hellmann MD, Paz-Ares L, et al. Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2019 Nov 21;381(21):2020-2031.

extras

- Braf response to ici is 23%
- Ntrk is .2% of nsclc
- Impower 010 post hoc sp263
- 19% pdl1 change from primary to met, usually it turns negative
- Impact of Decalcification, Cold Ischemia, and Deglycosylation on Performance of Programmed Cell Death Ligand-1 Antibodies With Different Binding Epitopes: Comparison of 7 Clones