Case #7

Matthew Stemm, MD
Jerome Loew, MD
Presentation

• 31-year-old woman
 – Initially presented with worsening neck pain
 – She was seen in an urgent care clinic and treated for muscle spasm
 – The patient had persistent neck pain and headache and was transferred to Rush for further evaluation and diagnosis
Physical exam

- Resistant to any movement of neck
- Tenderness at midline from base of occiput to C5 area
- Labs unremarkable
 - Sodium 139
 - Potassium 3.5
 - Chloride 103
 - CO2 total 26
 - Urea nitrogen 8
 - Creatinine 0.50
 - Calcium 9.3
 - Spot urine phosphorus 37.4
She was found on imaging to have a large calcified clival mass which demonstrated mass effect on the right side of the medulla.
MRI

- 5.0 cm x 3.0-cm x 3.0-cm expansile, destructive mass in the right clivus and along the right anterolateral margin of the foramen magnum
Surgery

• A biopsy was performed
 • Showed a spindle cell lesion with extensive calcification
• Proceeded with resection
Diagnosis?
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Osteosarcoma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Vestibular schwannoma
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Osteosarcoma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Vestibular schwannoma

- Spindle cells are very benign appearing, no necrosis, pleomorphism, or high mitotic count
- No cartilage or osteoid material
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Osteosarcoma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Vestibular schwannoma

- Spindle cells are very benign appearing, no necrosis, pleomorphism, or high mitotic count
- No cartilage or osteoid material
- Cells do not have neural features or astrocytic features
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Osteosarcoma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Vestibular schwannoma

- Spindle cells are very benign appearing, no necrosis, pleomorphism, or high mitotic count
- No cartilage or osteoid material
- Cells do not have neural features or astrocytic features
- Lacks Antoni A/B pattern
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Osteosarcoma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Vestibular schwannoma

- Spindle cells are very benign appearing, no necrosis, pleomorphism, or high mitotic count
- No cartilage or osteoid material
- Cells do not have neural features or astrocytic features
- Lacks Antoni A/B pattern
- No cavernous blood filled spaces
Differential diagnosis

- Neoplastic
 - Chordoma
 - Meningioma

- Reactive / other
 - Infectious granulomatous disease
 - Phosphaturic mesenchymal tumor
 - Tumoral calcinosis
Chordoma

• **Similarities**
 – Epithelioid cells
 – Abundant pale pink to clear cytoplasm, central nuclei

• **Differences**
 – Nests and cords of cells
 – Myxoid matrix
 – S100 and cytokeratin positive

Our case
Meningioma

- **Similarities**
 - Whorled or lobulated architecture
 - Indistinct cell borders

- **Differences**
 - Round to oval nuclei
 - Psammoma bodies
 - S100 positive

Our case
Granulomatous Reaction

- **Similarities**
 - Multinucleated histiocytes
- **Differences**
 - Rim of lymphocytes
 - Necrosis
 - Giant cells are localized

Our case
Phosphaturic Mesenchymal Tumor

• Similarities
 – Spindle cell lesion
 – Calcification
 – Giant cells

• Differences
 – Osteomalacia, phosphaturia and hypophosphatemia
Tumoral calcinosis

- **Similarities**
 - Large calcified areas
 - Multinucleated giant cells
- **Differences**
 - Usually a skin lesion
 - Usually familial and associated with hyperphosphatemia

AFIP atlas of nonneoplastic Disorders of Bones and Joints

Our case
Differential Diagnosis of calcified lesions of the neural axis

- Astrocytoma
- Cavernous malformation
- Chondrosarcoma
- Chordoma
- Ganglioglioma
- Infection/granuloma
- Meningioma
- Oligodendroglioma
- Phosphaturic mesenchymal tumor
- Tumoral calcinosis
- Osteosarcoma
- Vestibular schwannoma
Immunohistochemistry

• Negative
 – S100
 – Desmin
 – Pan-keratin
 – EMA
 – GFAP

• Positive
 – SMA in reactive stromal myofibroblasts
 – CD163 highlights histiocytes
Calcifying pseudoneoplasm of the neural axis (CAPNON)
Calcifying pseudoneoplasm

Epidemiology

• Very rare
 – About 32 cases reported worldwide
• First described by Rhodes and Davis in 1978
• Found along the neural axis
 – Anywhere from L2 to frontal lobe
• Age range is highly variable
 – 6-83 years
 – Mean age 46.2
• Clinical symptoms
 – Most commonly pain
 – Other compressive symptoms possible
Radiology

- Calcification
- Hypointense appearance on T1 and T2 weighted images without gadolinium enhancement
- Minimal linear enhancement or partial rim enhancement
- Often showing destruction or erosion of adjacent bone
- Radiologic differential is broad and nonspecific

Histology

- “Classic” histology
 - Calcification
 - Palisading spindle to epithelioid cells
 - Fibrous stroma
 - Foreign body giant cells
- Can also show
 - Chondromyxoid matrix in a nodular pattern
 - Osseous metaplasia or psammoma bodies
- These patterns are variable and not always present

• Hydroxyapatite
 – $\text{Ca}_5(\text{PO}_4)_3(\text{OH})$

• Calcium Pyrophosphate
 – $(\text{Ca}_2\text{O}_7\text{P}_2)$
Etiology

- Originally though to be an unusual expression of tumoral calcinosis
- Suggested to be a healing response
 - Trauma
 - Infection
 - Inflammation
- Possible tissue of origin includes arachnoid or fibroblasts in the choroid plexus stroma
- Calcifying pseudoneoplasm of the neural axis
 - Vs Calcifying pseudotumor of the neural axis
Treatment

• Surgical resection
 – No chemotherapy or radiation

• Benign course is typical
 – One case has shown recurrence
 – 2 fatalities reported due to CAPNON, due to complications related to anatomic location
Follow up

• Patient is 6 months post op with no recurrence
References

- Special thanks to Dr. Unni